Product category
熱設計是隨著通訊和信息技術產業的發展而出現的一個較新的行業,且越來越被重視。隨著通訊和信息產品性能的不斷提升和人們對于通訊和信息設備便攜化和微型化要求的不斷提升,信息設備的功耗不斷上升,而體積趨于減小,高熱流密度散熱需求越來越迫切 。熱設計便是采用適當可靠的方法控制產品內部所有電子元器件的溫度,使其在所處的工作環境條件下不超過穩定運行要求的高溫度,以保證產品正常運行的安全性,長期運行的可靠性 。此外,低溫環境下控制加熱量而使設備啟動也是熱可靠性的重要內容。
設備的耗散的熱量決定了溫升,因此也決定了任一給定結構的溫度;熱量以導熱、對流及輻射傳遞出去,每種形式傳遞的熱量與其熱阻成反比;熱量、熱阻和溫度是熱設計中的重要參數;所有的冷卻系統應是簡單又經濟的,并適合于特定的電氣和機械、環境條件,同時滿足可靠性要求。
熱設計應與電氣設計、結構設計、可靠性設計同時進行,當出現矛盾時,應進行協調解決。
–電子設備的有效輸出功率比所需的輸入功率小得多,而這部分多余的功率則轉化為熱而耗散掉。
–隨著電子技術的發展,電子元器件和設備日趨小型化,使得設備的體積功率密度大大增加
–提供一條低熱阻通路,保證熱量順利傳遞出去。
熱設計目的
控制電子產品內部所有電子元器件的溫度,使其在產品所處的工作環境條件下不超過規定的高允許溫度,從而保證電子產品正常、可靠的工作。
熱設計基本術語
(a)熱環境包括產品或元器件周圍流體的種類、溫度、壓力及速度,表面溫度、外形及黑度,每個元器件周圍的傳熱通路等。
(b)熱流密度:單位面積的熱流量。
(c)體積功率密度:單位體積的熱流量。
(d)熱阻:熱量在熱流路徑上遇到的阻力。
(e)熱阻網絡:熱阻的串聯、并聯或混聯形成的熱流路徑圖。
(f)冷板:利用單相流體強迫流動帶走熱量的一種換熱器。
(g)熱沉:是一個無限大的熱容器,其溫度不隨傳遞到它的熱能大小而變化。它可能是大地、大氣、大體積的水或宇宙等。又稱熱地。
熱設計的基本原則
(a)應通過控制散熱量的大小來控制溫升;
(b)選擇合理的熱傳遞方式(傳導、對流、輻射);傳導冷卻可以解決許多熱設計問題,對于中等發熱的產品,采用對流冷卻往往合適,輻射傳熱是空間電子設備的主要傳熱方式;
(c)盡量減小各種熱阻,控制元器件的溫度;電子產品熱設計中可能遇到三種熱阻:內熱阻、外熱阻和系統熱阻。內熱阻是指產生熱量的點或區域與器件表面點(安裝表面)之間的熱阻;外熱阻是指器件上任意參考點(安裝表面)與換熱器間,或與產品、冷卻流體和環境交界面之間的熱阻;系統熱阻是指產品外表面與周圍空氣間或冷卻流體間的熱阻;
(d)采用的冷卻系統應該簡單經濟,并適用于電子產品所在的環境條件的要求;
(e)應考慮尺寸和重量、耗熱量、經濟性、與失效率對應的元器件高允許溫度、電路布局、產品的復雜程度等因素;
(f)應與電氣及機械設計同時進行;
(g)不得有損于產品的電性能;
(h)*熱設計與*電路設計有矛盾時,應采用折中的解決方法;
(i)應盡量減小熱設計中的誤差。
熱設計的方法
電子產品熱設計應首先根據產品的可靠性指標及產品所處的環境條件確定熱設計目標,熱設計目標一般為產品內部元器件允許的高溫度,根據熱設計目標及產品的結構、體積、重量等要求進行熱設計,主要包括冷卻方法的選擇、元器件的安裝與布局、印制電路板散熱結構的設計和機箱散熱結構的設計。常見的熱設計流程見圖1所示。
熱設計目標的確定
熱設計目標通常根據產品的可靠性指標與工作的環境條件來確定,已知可靠性指標,依據GJB/ 299B-1998《電子設備可靠性預計手冊》中元器件失效率與工作溫度之間的關系,可以計算出元器件允許的高工作溫度,此溫度即為元器件的熱設計目標。工程上為簡便計算,通常采用元器件經降額設計后允許的高溫度值做為熱設計目標。
熱設計實施要點
大限度的利用導熱、自然對流和輻射等簡單、可靠的冷卻技術,并盡可能的縮短傳熱路徑,增大換熱(或導熱)面積。
(1)冷卻方法的選擇實施要點
(a)根據電子產品的功耗計算熱流密度或體積功率密度;
(b)根據設計條件和熱流密度或體積功率密度選擇合適的冷卻方法;
(c)冷卻方法的選擇順序為:自然冷卻、強迫風冷、液體冷卻、蒸發冷卻等。
(2)元器件的安裝與布局實施要點
(a)盡量減小元器件安裝界面的熱阻。元器件的排列與安裝應有利于流體的對流;
(b)元器件安裝時,應充分考慮周圍元器件的輻射換熱的影響,對靠近熱源的熱敏感的元器件應采取熱屏蔽措施;
1)半導體器件
通過采用大面積的光滑接觸表面以及按要求導熱襯墊或添加劑,盡量減小器件與其安裝座之間的接觸熱阻;
置于遠離高溫元器件的地方;
在空氣或冷卻劑流動的方向采用垂直安置散熱片的散熱器。采用噴涂或涂覆的表面以改善輻射特性。
2)電容器
置于遠離熱源的地方;
對其它熱源采取絕熱措施。
3)電阻器
置于對流良好的位置;
使用機械的夾緊或封裝材料以改善向散熱器的熱傳遞;
盡可能采用短引線。
4)變壓器和電感器
為將這些器件的熱傳遞出去,提供導熱通路;
置于對流冷卻良好的位置;
適當處設置散熱片。
(3)印制電路板的散熱設計實施要點
(a)印制板組裝件應有適當的導熱措施,如采用導熱印制板(導熱條、導熱板、金屬夾芯等)。
(b)印制板導軌應采用熱阻小的導軌,如U形導軌或楔形導軌等;
(c)應控制印制板組裝件之間的間距,一般應控制在19至21mm之間。
(4)機箱的散熱設計實施要點
(a)充分利用機箱結構作為散熱體,通過傳導、對流和輻射把機箱內部電子模塊及電子元件產生的熱量有效散發出去。
(b)增大自然對流機箱表面的黑度,以增強輻射換熱能力。
(c)所有傳導熱量的接觸面要求平整光滑,有較高的表面光潔度;
(d)采用導熱系數高的金屬材料,考慮到材料的比重因素,推薦首先選用鋁合金;
(e)增加需要散熱元件和模塊的導熱接觸面面積;
(f)對高低不平的導熱面采用導熱絕緣海綿橡膠板作為傳熱層;
(g)縮短熱傳導的距離;
(h)增大機箱的散熱表面積;
(i)增加導熱接觸面的壓力;
(j)非密封型機箱,在機箱上合理開通風口,加強對流、換熱作用;
(k)功耗較大時,考慮采用強迫風冷機箱或液體冷卻機箱等。
高低溫濕熱低氣壓試驗箱 主要規格和技術參數:
型號 | SE-DQ250 | SE-DQ500 | SE-DQ1000 | SE-DQ2000 | |
內尺寸(D×W×H) | 60×60×70 | 80×70×90 | 100×100×100 | 120×120×150 | |
電源 | AC380V/50HZ三相四線+接地線 | ||||
調溫方式 | 平衡調溫方式(BTC方式) | ||||
性 能 | 溫度范圍 | -70℃~150℃ | |||
溫度波動度 | ≤1.0℃(常壓空載) | ||||
溫度均勻度 | ≤2.0·C(常壓空載) | ||||
溫度偏差 | ±2.0℃(常壓空載) | ||||
升降溫速率 | 升溫(20~+150℃)≤50min 降溫(20~-60℃)1.0℃/min | ||||
濕度范圍 | 20~98%RH | ||||
濕度偏差 | ±3%RH(常壓空載) | ||||
壓力范圍 | 常壓~1 kPa | 常壓~0.5 kPa | |||
壓力精度 | ±2KPa(常壓~40KPa時);±5%(40KPa~4KPa時); ±0.1KPa(4KPa~1KPa時) | ||||
降壓速率 | ≤45min(常壓→1KPa) | ||||
材 料 | 外殼材料 | 防銹處理冷軋薄鋼板(表面噴塑) | |||
內膽材料 | 不銹鋼板 | ||||
承壓材料 | 防銹處理厚銅板(表面憤塑) | ||||
保jE材料 | 玻璃棉聚氨酶發j包 | ||||
制冷機 | 半封閉壓縮機 | ||||
冷卻方式 | 水冷 | ||||
抽真空方式 | 機械旋片式真空泵(萊寶) | ||||
加熱器 | 鎮-錯合金加熱器 | ||||
鼓風機 | 軸流風機 | ||||
觀察窗 | 觀察窗鍍膜中空玻璃 | ||||
溫度傳感器 | Pt100鎧裝鈾電阻 | ||||
控制器 | LCD觸摸屏控制器 | ||||
安全裝置 | 超溫保護,壓縮機缺油、超莊、斷路、風機過載保護,電面缺帽保護,漏電保護,缺水保護,真空泵故障報警 | ||||
標準配置 | 測試孔(φ100,位于左側1個),擱板,擱板架(2套),箱內節能燈,時間累積器,待測品輔助電源3組 | ||||
選項配件 | 遠程監控計算機及軟件,視頻監控系統,快速回壓裝置,快速降壓裝置,氮氣輔助裝置 |